Search results for "symbiotic bacteria"

showing 10 items of 26 documents

2021

Many phytophagous insects harbor symbiotic bacteria that can be transmitted vertically from parents to offspring, or acquired horizontally from unrelated hosts or the environment. In the latter case, plants are a potential route for symbiont transfer and can thus foster a tripartite interaction between microbe, insect, and plant. Here, we focus on two bacterial symbionts of the darkling beetle Lagria villosa that belong to the genus Burkholderia; the culturable strain B. gladioli Lv-StA and the reduced-genome strain Burkholderia Lv-StB. The strains can be transmitted vertically and confer protection to the beetle’s eggs, but Lv-StA can also proliferate in plants, and both symbiont strains h…

0106 biological sciencesMicrobiology (medical)0303 health sciencesbiologyVillosaHost (biology)media_common.quotation_subjectInsectbiology.organism_classification010603 evolutionary biology01 natural sciencesMicrobiology03 medical and health sciencesAposymbioticDarkling beetleBurkholderiaSymbiosisBotany030304 developmental biologySymbiotic bacteriamedia_commonFrontiers in Microbiology
researchProduct

Genome sequence of the pea aphid Acyrthosiphon pisum

2010

The genome of the pea aphid shows remarkable levels of gene duplication and equally remarkable gene absences that shed light on aspects of aphid biology, most especially its symbiosis with Buchnera.

0106 biological sciencesTANDEM REPEATSGenome InsectGene TransferRRES175Sequència genòmicaFaculty of Science\Computer ScienceCPG METHYLATION01 natural sciencesGenomeMedical and Health SciencesInternational Aphid Genomics ConsortiumBiologiska vetenskaperBiology (General)GENE-EXPRESSION2. Zero hungerGenetics0303 health sciencesAphidGenomeAfídidsGeneral NeuroscienceGENOME SEQUENCEfood and beveragesDROSOPHILA CIRCADIAN CLOCKBiological SciencesGenetics and Genomics/Microbial Evolution and GenomicsINSECTEGenètica microbianapuceronAPIS-MELLIFERAGeneral Agricultural and Biological SciencesInfectionsymbioseBiotechnologyResearch ArticleVIRUS VECTORING175_GeneticsSYMBIOTIC BACTERIAGene Transfer HorizontalQH301-705.5ACYRTHOSIPHON PISUMBiologyHOLOMETABOLOUS INSECTSHOST-PLANT010603 evolutionary biologyGENOME SEQUENCE;PEA APHID;ACYRTHOSIPHON PISUM;INSECT-PLANT;HOST-PLANT;VIRUS VECTORING;PHENOTYPIC PLASTICITY;HOLOMETABOLOUS INSECTS;INSECTE;RAVAGEUR DES CULTURES; SOCIAL INSECTGeneral Biochemistry Genetics and Molecular BiologyHorizontal03 medical and health sciencesBuchneraPHENOTYPIC PLASTICITYINSECT-PLANTGeneticsGene familyLife ScienceAnimalsSymbiosisGene030304 developmental biologyWhole genome sequencingGeneral Immunology and MicrobiologyAnnotation; Aphid; Genome sequenceAgricultural and Veterinary Sciences175_EntomologyGenètica animalBacteriocytegénomegèneHuman GenomePEA APHIDBiology and Life Sciences15. Life on landbiochemical phenomena metabolism and nutritionbiology.organism_classificationREPETITIVE ELEMENTSDNA-SEQUENCESAcyrthosiphon pisumGenome SequenceGenetics and Genomics/Genome ProjectsRAVAGEUR DES CULTURESAphidsPHEROMONE-BINDINGBuchneraInsectDevelopmental Biology[SDV.EE.IEO]Life Sciences [q-bio]/Ecology environment/Symbiosis
researchProduct

Infection by Endosymbiotic “Male-Killing” Bacteria in Coleoptera

2018

Wolbachia, Rickettsia, Spiroplasma and Cardinium are endosymbiotic and intracellular bacteria known to cause numerous disorders in host reproduction, reflected in their common name “male-killers”. In this study, 297 beetle species from various taxonomic groups were screened with the use of molecular markers for the presence of infection by any of these endosymbionts. Wolbachia was found to be the most common “male-killer” among beetle hosts as it infected approx. 27% of species. Rickettsia, Spiroplasma and Cardinium were much less prevalent as they infected: 8%, 3% and 2%, respectively, of the studied beetle species. This is the first report of Cardinium presence in beetle hosts. Incidences…

0106 biological sciencesbiologySpiroplasmabeetleintracellular infectionSpiroplasmaGeneral Medicinebiology.organism_classification010603 evolutionary biology01 natural sciencesGeneral Biochemistry Genetics and Molecular BiologyMicrobiology010602 entomologychemistry.chemical_compoundRickettsiachemistryMolecular markerCardiniumWolbachiaRickettsiaBacteriaEndosymbiotic bacteriaWolbachiaFolia Biologica-Krakow
researchProduct

Chance and necessity in the genome evolution of endosymbiotic bacteria of insects.

2017

An open question in evolutionary biology is how does the selection–drift balance determine the fates of biological interactions. We searched for signatures of selection and drift in genomes of five endosymbiotic bacterial groups known to evolve under strong genetic drift. Although most genes in endosymbiotic bacteria showed evidence of relaxed purifying selection, many genes in these bacteria exhibited stronger selective constraints than their orthologs in free-living bacterial relatives. Remarkably, most of these highly constrained genes had no role in the host–symbiont interactions but were involved in either buffering the deleterious consequences of drift or other host-unrelated function…

0301 basic medicineGenome evolutionInsectaBacteriaEcologyGenetic DriftBiologyMicrobiologyEvolution Molecular03 medical and health sciencesMicrobial genomics030104 developmental biologyMutationAnimalsOriginal ArticleSelection GeneticSymbiosisHumanitiesEcology Evolution Behavior and SystematicsEndosymbiotic bacteriaGenome BacterialThe ISME journal
researchProduct

The cotton stainer's gut microbiota suppresses infection of a cotransmitted trypanosomatid parasite

2018

The evolutionary and ecological success of many insects is attributed to mutualistic partnerships with bacteria that confer hosts with novel traits including food digestion, nutrient supplementation, detoxification of harmful compounds and defence against natural enemies. Dysdercus fasciatus firebugs (Hemiptera: Pyrrhocoridae), commonly known as cotton stainers, possess a simple but distinctive gut bacterial community including B vitamin-supplementing Coriobacteriaceae symbionts. In addition, their guts are often infested with the intestinal trypanosomatid parasite Leptomonas pyrrhocoris (Kinetoplastida: Trypanosomatidae). In this study, using experimental bioassays and fluorescence in situ…

0301 basic medicineInnate immune systembiologyPyrrhocoridaeZoologyGut floraPyrrhocorisbiology.organism_classification03 medical and health sciences030104 developmental biologyGeneticsParasite hostingPeritrophic matrixEcology Evolution Behavior and SystematicsBacteriaSymbiotic bacteriaMolecular Ecology
researchProduct

Metabolic complementation in bacterial communities: Necessary conditions and optimality

2016

Bacterial communities may display metabolic complementation, in which different members of the association partially contribute to the same biosynthetic pathway. In this way, the end product of the pathway is synthesized by the community as a whole. However, the emergence and the benefits of such complementation are poorly understood. Herein, we present a simple model to analyze the metabolic interactions among bacteria, including the host in the case of endosymbiotic bacteria. The model considers two cell populations, with both cell types encoding for the same linear biosynthetic pathway. We have found that, for metabolic complementation to emerge as an optimal strategy, both product inhib…

0301 basic medicineMicrobiology (medical)Cell typeSystems biology030106 microbiologyCelllcsh:QR1-502Computational biologyBiologyMicrobiologylcsh:Microbiology03 medical and health sciencesMetabolic complementationmetabolic modelingHypothesis and TheoryBotanymedicineCinara cedricross-feedingEndosymbiotic bacteriaHost (biology)biology.organism_classificationkinetic modelingComplementation030104 developmental biologymedicine.anatomical_structureProduct inhibitionendosymbiotic bacteriaMetabolic ModellingoptimizationBacteria
researchProduct

Determinism and contingency shape metabolic complementation in an endosymbiotic consortium

2017

Bacterial endosymbionts and their insect hosts establish an intimate metabolic relationship. Bacteria offer a variety of essential nutrients to their hosts, whereas insect cells provide the necessary sources of matter and energy to their tiny metabolic allies. These nutritional complementations sustain themselves on a diversity of metabolite exchanges between the cell host and the reduced yet highly specialized bacterial metabolism-which, for instance, overproduces a small set of essential amino acids and vitamins. A well-known case of metabolic complementation is provided by the cedar aphid Cinara cedri that harbors two co-primary endosymbionts, Buchnera aphidicola BCc and Ca. Serratia sym…

0301 basic medicineMicrobiology (medical)In silicolcsh:QR1-502Metabolic networkGenomeMicrobiologylcsh:MicrobiologyMetabolic modelingStoichiometric analysis03 medical and health scienceschemistry.chemical_compoundBiosynthesisCross-feedingEndosymbiotic bacteriaOriginal ResearchGeneticsMetabolic evolutionbiologyBiochemistry and Molecular Biologybiology.organism_classificationComplementationMetabolic pathway030104 developmental biologychemistryBuchneraBacteriaBiokemi och molekylärbiologi
researchProduct

Et tu, Brute? Not Even Intracellular Mutualistic Symbionts Escape Horizontal Gene Transfer

2017

Many insect species maintain mutualistic relationships with endosymbiotic bacteria. In contrast to their free-living relatives, horizontal gene transfer (HGT) has traditionally been considered rare in long-term endosymbionts. Nevertheless, meta-omics exploration of certain symbiotic models has unveiled an increasing number of bacteria-bacteria and bacteria-host genetic transfers. The abundance and function of transferred loci suggest that HGT might play a major role in the evolution of the corresponding consortia, enhancing their adaptive value or buffering detrimental effects derived from the reductive evolution of endosymbionts' genomes. Here, we comprehensively review the HGT cases recor…

0301 basic medicine[SDV.OT]Life Sciences [q-bio]/Other [q-bio.OT]Adaptive valuelcsh:QH426-470transfert horizontal de gènenutritional symbiosisReviewBiologyGenome03 medical and health sciencesGeneticshorizontal gene transfer (HGT);insects;integrative evolution;intracellular bacteria;nutritional symbiosishorizontal gene transfer (HGT)insectsGenetics (clinical)Endosymbiotic bacteriaEcologyintracellular bacteriaIntracellular parasiteinsectatransformation intégrativeintegrative evolutionlcsh:Genetics030104 developmental biologyEvolutionary biologyHorizontal gene transferbactérie intracellulairesymbioseFunction (biology)Autre (Sciences du Vivant)
researchProduct

Testing the Domino Theory of Gene Loss in Buchnera aphidicola: The Relevance of Epistatic Interactions

2018

The domino theory of gene loss states that when some particular gene loses its function and cripples a cellular function, selection will relax in all functionally related genes, which may allow for the non-functionalization and loss of these genes. Here we study the role of epistasis in determining the pattern of gene losses in a set of genes participating in cell envelope biogenesis in the endosymbiotic bacteria Buchnera aphidicola. We provide statistical evidence indicating pairs of genes in B. aphidicola showing correlated gene loss tend to have orthologs in Escherichia coli known to have alleviating epistasis. In contrast, pairs of genes in B. aphidicola not showing correlated gene loss…

0301 basic medicinemedicine.disease_causeGenomeGeneral Biochemistry Genetics and Molecular BiologyArticlegene interactions03 medical and health sciencesmedicinecorrelated evolutionlcsh:Sciencegenome reductionEscherichia coliGeneEcology Evolution Behavior and SystematicsGeneticsbiologyPaleontologybiology.organism_classification030104 developmental biologySpace and Planetary Scienceendosymbiotic bacteriaProteomeEpistasislcsh:QBuchneraBiogenesisFunction (biology)Life
researchProduct

2019

The gut microbiota influence host vascular physiology locally in the intestine, but also evoke remote effects that impact distant organ functions. Amongst others, the microbiota affect intestinal vascular remodeling, lymphatic development, cardiac output and vascular function, myelopoiesis, prothrombotic platelet function, and immunovigilance of the host. Experimentally, host-microbiota interactions are investigated by working with animals devoid of symbiotic bacteria, i.e., by the decimation of gut commensals by antibiotic administration, or by taking advantage of germ-free mouse isolator technology. Remarkably, some of the vascular effects that were unraveled following antibiotic treatmen…

0301 basic medicinemedicine.drug_classImmunologyAntibioticsBiologyGut floraCommensalismbiology.organism_classification03 medical and health sciences030104 developmental biology0302 clinical medicineLymphatic systemImmunologymedicineImmunology and AllergyPlateletMyelopoiesisFunction (biology)030215 immunologySymbiotic bacteriaFrontiers in Immunology
researchProduct